2018年東大入試1日目を解いてみたコメントや感想、難易度など。

◆平井の東大合格塾(敬天塾)◆
・一人の先生が、全科目のバランスが取れた最適な戦略を指導!
・日本一、東大の過去問を徹底的に分析
・塾生自らが、解法を発見し、習得する力を育成
・東大の過去問を、上から見下ろす経験を毎週体験
・最新情報、先端情報をすぐに提供
・受験くらい余裕でクリアして、その後の人生で差を付けろ!

詳細の紹介ページはこちら

昨日は国公立大学の前期試験でしたね。
私も早速、東大入試を解いてみました。
昨年も当日に解いて、即アップしたのですが、好評だったので今年も。
以下、1問ずつコメントです。

文系第1問:2次関数、点と直線の距離、最小値、領域図示

東大文系数学にしては、標準的な難易度でしょうか。
(1)はlとmの直線の方程式を出すのは非常に簡単。ここは部分点もらいでしょう。
点Aを何かの文字でおき、lとmまでの距離を「点と直線の距離」の公式で出す。
これらの√を取って絶対値の計算と流れますが、割とパッと見の印象通り。
しっかり勉強していれば、手を動かしていくだけで点数が取れる問題だと思います。

「2018年東大入試1日目を解いてみたコメントや感想、難易度など。」の続きを読む…

2018年 東大文系数学 得点の作戦(戦略とは?各設問で考えること)

◆平井の東大合格塾(敬天塾)◆
・一人の先生が、全科目のバランスが取れた最適な戦略を指導!
・日本一、東大の過去問を徹底的に分析
・塾生自らが、解法を発見し、習得する力を育成
・東大の過去問を、上から見下ろす経験を毎週体験
・最新情報、先端情報をすぐに提供
・受験くらい余裕でクリアして、その後の人生で差を付けろ!

詳細の紹介ページはこちら

戦略と作戦と戦術と大戦略

気付いてみれば、最近めっきり戦略っぽいことを書いていませんでした。
細かく言えば、これまで書いてきた、東大入試解説でも少し戦略っぽいことを書いていたんですけど、でもちょっとだけ。
「戦略」という言葉が流行ってまして、濫用されています。
狙って目標を達成するような思考法のことを「戦略」と表現しているような気がしますが、決してそれだけではありません。
例えば、世間で言われている、目標を立て、計画を立案し、実行して結果を出すようなタイプのものは、戦略学では「順次戦略」と言われるものであって、それ以外の戦略もある。(累積戦略)
年末に発売されました『論理アタマのつくり方』(ダイヤモンド社)のメインテーマである「論理」なんかは定義のない用語ですから、誰でも好きなように語って良いのですけど、「戦略」はそうではありません。
「戦略」「戦術」「作戦」はそれぞれ違う概念ですし、「大戦略」なんて言葉もあります。それぞれ違いを説明出来ますでしょうか?
一見受験から遠いようで、実は受験に直結するのが戦略の考え方です。
東大入試では、一語一語の持つ意味合いに非常にこだわって考える必要があります。何となく文章を読んでいる人は、まず「読解力」を鍛えることをオススメします。
戦略も、読解力も、成績の上げ方も分からない!!
と言う方は、幣塾の門をたたくことをオススメします。

2018年東大文系数学の攻略作戦

と、前置きは長くなりましたが、2018年の東大文系数学の作戦に行きましょう。
拙ブログでは、各科目の攻略する道筋のことを「作戦」と呼んでいます。(戦術だと小さすぎて、戦略だと大げさでしょう。)
100分の試験時間で、どのような時間を使い、どのような頭を使い、どこまで攻めていくのか。
そういう事を考えなければ、攻略が遠くなります。
極端なことを言えば、試験開始5分は1文字も書かず、解答用紙は白紙のままにするくらいで丁度よいです。
では、4問を改めて、眺めて下さい。

「2018年 東大文系数学 得点の作戦(戦略とは?各設問で考えること)」の続きを読む…

2018年 東大理系数学 得点の作戦(戦略とは?各設問で考えること)

◆平井の東大合格塾(敬天塾)◆
・一人の先生が、全科目のバランスが取れた最適な戦略を指導!
・日本一、東大の過去問を徹底的に分析
・塾生自らが、解法を発見し、習得する力を育成
・東大の過去問を、上から見下ろす経験を毎週体験
・最新情報、先端情報をすぐに提供
・受験くらい余裕でクリアして、その後の人生で差を付けろ!

詳細の紹介ページはこちら

戦略と作戦と戦術と大戦略

「戦略」という言葉が流行ってまして、濫用されています。
狙って目標を達成するような思考法のことを「戦略」と表現しているような気がしますが、決してそれだけではありません。
例えば、世間で言われている、目標を立て、計画を立案し、実行して結果を出すようなタイプのものは、戦略学では「順次戦略」と言われるものであって、それ以外の戦略もある。(累積戦略)
年末に発売されました『論理アタマのつくり方』(ダイヤモンド社)のメインテーマである「論理」なんかは定義のない用語ですから、誰でも好きなように語って良いのですけど、「戦略」はそうではありません。
「戦略」「戦術」「作戦」はそれぞれ違う概念ですし、「大戦略」なんて言葉もあります。それぞれ違いを説明出来ますでしょうか?
一見受験から遠いようで、実は受験に直結するのが戦略の考え方です。
東大入試では、一語一語の持つ意味合いに非常にこだわって考える必要があります。何となく文章を読んでいる人は、まず「読解力」を鍛えることをオススメします。
戦略も、読解力も、成績の上げ方も分からない!!
と言う方は、幣塾の門をたたくことをオススメします。

「2018年 東大理系数学 得点の作戦(戦略とは?各設問で考えること)」の続きを読む…

2018年東大数学(文)第4問 1文字も書かずに勝利を確信できるようになる

 

数学を解くときのコツ

数学で、いきなり解き始めるのはアウト

久しぶりに、受験の内容を。

うちの塾の看板でもある、「東大文系受験者のためだけの数学講座」ですが、ちょっとだけ内容を公開しましょう。

 

こんなことをやっています。

 

 

文系受験者にとって、数学は悩みの種。

「2018年東大数学(文)第4問 1文字も書かずに勝利を確信できるようになる」の続きを読む…

2018年 東大理系数学 第6問の解説(空間図形、2次不等式、積分、切断面)

日本一徹底して東大対策を行う塾 東大合格塾「敬天塾」◆

一人の先生が、全科目のバランスが取れた最適な戦略を指導
厳しい入塾審査を突破した精鋭たちと、東大合格法を徹底討論
塾生自らが、解法を発見し、習得する力を育成
受験くらい余裕でクリアして、その後の人生で差を付けろ!

1年後の東大合格を目指すなら、私の塾の門をたたけ!
弊塾のサービスは、全てオンラインで受講が可能です。
地方の方、仮面浪人の方、社会人受験の方など、広く皆さんにご受講いただけます。
ご希望のサービスを、以下からお選び下さい。

【2021年に東大を受験したい方】
≪東大文系受験者対象≫敬天塾本科生の募集はこちらから(このページです。)
≪東大文系受験者対象≫オープン授業【東大文系数学】はこちらから
≪高1・2でもOK!東大受験したい方ならだれでも対象≫オープン授業【東大数学のための単元導入授業】はこちらから
≪貴重な東大受験情報の発信≫オンラインサロンの紹介はこちらから
東大生や東大卒業生への個別指導依頼はこちら

【(中学生・高1~2生など)東大を受験したい方なら誰でも】
≪高1・2でもOK!東大受験したい方ならだれでも対象≫オープン授業【東大数学のための単元導入授業】はこちらから
≪貴重な東大受験情報の発信≫オンラインサロンの紹介はこちらから
東大生や東大卒業生への個別指導依頼はこちら

【東大受験の情報を集めたい方】
≪貴重な東大受験情報の発信≫オンラインサロンの紹介はこちらから
オンラインサロンの無料記事を読みたい方はこちら

【敬天塾について知りたい方】
敬天塾の理念
敬天塾からの東大合格者インタビュー(ノーカット)はこちら
東大生や東大卒業生への指導依頼はこちら
スタッフの募集ページはこちら

2018年 東大理系数学 第6問の解説(空間図形、2次不等式、積分、切断面)

まずはいつも通り問題をどうぞ。
東大理系では昔から空間図形が頻出だと言われています。そして、たまに物凄い難問が含まれます。(一方で、易しい問題もありますが。)

「2018年 東大理系数学 第6問の解説(空間図形、2次不等式、積分、切断面)」の続きを読む…

2018年 東大理系数学 第5問の解説(複素数平面、図形と座標、放物線)

日本一徹底して東大対策を行う塾 東大合格塾「敬天塾」◆

一人の先生が、全科目のバランスが取れた最適な戦略を指導
厳しい入塾審査を突破した精鋭たちと、東大合格法を徹底討論
塾生自らが、解法を発見し、習得する力を育成
受験くらい余裕でクリアして、その後の人生で差を付けろ!

1年後の東大合格を目指すなら、私の塾の門をたたけ!
弊塾のサービスは、全てオンラインで受講が可能です。
地方の方、仮面浪人の方、社会人受験の方など、広く皆さんにご受講いただけます。
ご希望のサービスを、以下からお選び下さい。

【2021年に東大を受験したい方】
≪東大文系受験者対象≫敬天塾本科生の募集はこちらから(このページです。)
≪東大文系受験者対象≫オープン授業【東大文系数学】はこちらから
≪高1・2でもOK!東大受験したい方ならだれでも対象≫オープン授業【東大数学のための単元導入授業】はこちらから
≪高1・2でもOK!東大受験したい方ならだれでも対象≫オープン授業【東大数学のための単元導入授業】はこちらから
≪貴重な東大受験情報の発信≫オンラインサロンの紹介はこちらから
東大生や東大卒業生への個別指導依頼はこちら

【(中学生・高1~2生など)東大を受験したい方なら誰でも】
≪高1・2でもOK!東大受験したい方ならだれでも対象≫オープン授業【東大数学のための単元導入授業】はこちらから
≪貴重な東大受験情報の発信≫オンラインサロンの紹介はこちらから
東大生や東大卒業生への個別指導依頼はこちら

【東大受験の情報を集めたい方】
≪貴重な東大受験情報の発信≫オンラインサロンの紹介はこちらから
オンラインサロンの無料記事を読みたい方はこちら

【敬天塾について知りたい方】
敬天塾の理念
敬天塾からの東大合格者インタビュー(ノーカット)はこちら
東大生や東大卒業生への指導依頼はこちら
スタッフの募集ページはこちら

2018年 東大理系数学 第5問の解説(複素数平面、図形と座標、放物線)

さあ、東大頻出の複素数。苦手の人も多いと思います。行って見ましょう。

(1)の方針 複素数の図形は時間がかかる

図を描きながら、条件を追ってみましょう。まず、単位円上に点P(z)があり、円に対しての接線を引きます。その接線に対して、点A(1)と対称な点Q(u)を設定したあと、そのuに対してwを定義して、uやwに関する式を求めるというもの。
要するに、z → u → w の順に点を設定していくわけです。
uとwの関係式は問題文に与えられていますから、zとuの関係式を正確に求められれば(1)はもらいですね。
問題なのは、円の接線や、線対称が登場するところです。なぜかと言うと、座標の上で図形を扱う問題は厄介になり易いからです。
図形が登場すると解法が1つに定まらず、ハマらない解法で解くとやたらと時間がかかる事が多いのです。
予備校の模範解答では、簡単そうに解いてますが、それは模範解答だからであって、この模範解答に辿り着くまで、色々試さなければならないでしょう。時間がかかることを覚悟しなければならない問題です。

「2018年 東大理系数学 第5問の解説(複素数平面、図形と座標、放物線)」の続きを読む…

2018年 東大理系数学 第3問の解説(パラメータ、通過領域と軌跡、面積計算)

日本一徹底して東大対策を行う塾 東大合格塾「敬天塾」◆

一人の先生が、全科目のバランスが取れた最適な戦略を指導
厳しい入塾審査を突破した精鋭たちと、東大合格法を徹底討論
塾生自らが、解法を発見し、習得する力を育成
受験くらい余裕でクリアして、その後の人生で差を付けろ!

1年後の東大合格を目指すなら、私の塾の門をたたけ!
弊塾のサービスは、全てオンラインで受講が可能です。
地方の方、仮面浪人の方、社会人受験の方など、広く皆さんにご受講いただけます。
ご希望のサービスを、以下からお選び下さい。

【2021年に東大を受験したい方】
≪東大文系受験者対象≫敬天塾本科生の募集はこちらから(このページです。)
≪東大文系受験者対象≫オープン授業【東大文系数学】はこちらから
≪高1・2でもOK!東大受験したい方ならだれでも対象≫オープン授業【東大数学のための単元導入授業】はこちらから
≪高1・2でもOK!東大受験したい方ならだれでも対象≫オープン授業【東大数学のための単元導入授業】はこちらから
≪貴重な東大受験情報の発信≫オンラインサロンの紹介はこちらから
東大生や東大卒業生への個別指導依頼はこちら

【(中学生・高1~2生など)東大を受験したい方なら誰でも】
≪高1・2でもOK!東大受験したい方ならだれでも対象≫オープン授業【東大数学のための単元導入授業】はこちらから
≪貴重な東大受験情報の発信≫オンラインサロンの紹介はこちらから
東大生や東大卒業生への個別指導依頼はこちら

【東大受験の情報を集めたい方】
≪貴重な東大受験情報の発信≫オンラインサロンの紹介はこちらから
オンラインサロンの無料記事を読みたい方はこちら

【敬天塾について知りたい方】
敬天塾の理念
敬天塾からの東大合格者インタビュー(ノーカット)はこちら
東大生や東大卒業生への指導依頼はこちら
スタッフの募集ページはこちら

2018年 東大理系数学 第3問の解説(パラメータの扱い方、通過領域と軌跡、面積計算)

文系の第4問と共通問題です。(難易度は大分違いますが)
理系第2問のときにも書きましたが、この年の共通問題は文理で難易度がかなり違います。ということで、両方を見比べて学ぶと非常に効果が高いように思えます。
(但し、文系がこの理系第3問を見ても、分からなくなっちゃいますが。)

「2018年 東大理系数学 第3問の解説(パラメータ、通過領域と軌跡、面積計算)」の続きを読む…

2018年 東大理系数学 第2問の解説(数列、互いに素、最大公約数、理系と文系)

日本一徹底して東大対策を行う塾 東大合格塾「敬天塾」◆

一人の先生が、全科目のバランスが取れた最適な戦略を指導
厳しい入塾審査を突破した精鋭たちと、東大合格法を徹底討論
塾生自らが、解法を発見し、習得する力を育成
受験くらい余裕でクリアして、その後の人生で差を付けろ!

1年後の東大合格を目指すなら、私の塾の門をたたけ!
弊塾のサービスは、全てオンラインで受講が可能です。
地方の方、仮面浪人の方、社会人受験の方など、広く皆さんにご受講いただけます。
ご希望のサービスを、以下からお選び下さい。

【2021年に東大を受験したい方】
≪東大文系受験者対象≫敬天塾本科生の募集はこちらから(このページです。)
≪東大文系受験者対象≫オープン授業【東大文系数学】はこちらから
≪高1・2でもOK!東大受験したい方ならだれでも対象≫オープン授業【東大数学のための単元導入授業】はこちらから
≪高1・2でもOK!東大受験したい方ならだれでも対象≫オープン授業【東大数学のための単元導入授業】はこちらから
≪貴重な東大受験情報の発信≫オンラインサロンの紹介はこちらから
東大生や東大卒業生への個別指導依頼はこちら

【(中学生・高1~2生など)東大を受験したい方なら誰でも】
≪高1・2でもOK!東大受験したい方ならだれでも対象≫オープン授業【東大数学のための単元導入授業】はこちらから
≪貴重な東大受験情報の発信≫オンラインサロンの紹介はこちらから
東大生や東大卒業生への個別指導依頼はこちら

【東大受験の情報を集めたい方】
≪貴重な東大受験情報の発信≫オンラインサロンの紹介はこちらから
オンラインサロンの無料記事を読みたい方はこちら

【敬天塾について知りたい方】
敬天塾の理念
敬天塾からの東大合格者インタビュー(ノーカット)はこちら
東大生や東大卒業生への指導依頼はこちら
スタッフの募集ページはこちら

2018年 東大理系数学 第2問の解説(数列、互いに素、最大公約数、理系と文系)

以前も書きましたが、文系第2問と共通問題です・・・と書きながら、あまりにも難易度に差があるので、共通問題と言って良いのかどうか。
是非、文系第2問と比較しながら問題を見てほしいのですが、誘導の有無で難易度がここまで違うのかが、よくわかる問題です。

数学の問題は、全て誘導問だ!

数学の入試問題では、「誘導問題」が出題されます。ご存知の通り、(1)の結論を使って(2)を解き、(2)の結論を使って(3)を解くというものです。

「2018年 東大理系数学 第2問の解説(数列、互いに素、最大公約数、理系と文系)」の続きを読む…

2018年 東大理系数学 第1問の解説(サービス問題!?、極限、増減表)

日本一徹底して東大対策を行う塾 東大合格塾「敬天塾」◆

一人の先生が、全科目のバランスが取れた最適な戦略を指導
厳しい入塾審査を突破した精鋭たちと、東大合格法を徹底討論
塾生自らが、解法を発見し、習得する力を育成
受験くらい余裕でクリアして、その後の人生で差を付けろ!

1年後の東大合格を目指すなら、私の塾の門をたたけ!
弊塾のサービスは、全てオンラインで受講が可能です。
地方の方、仮面浪人の方、社会人受験の方など、広く皆さんにご受講いただけます。
ご希望のサービスを、以下からお選び下さい。

【2021年に東大を受験したい方】
≪東大文系受験者対象≫敬天塾本科生の募集はこちらから(このページです。)
≪東大文系受験者対象≫オープン授業【東大文系数学】はこちらから
≪高1・2でもOK!東大受験したい方ならだれでも対象≫オープン授業【東大数学のための単元導入授業】はこちらから
≪高1・2でもOK!東大受験したい方ならだれでも対象≫オープン授業【東大数学のための単元導入授業】はこちらから
≪貴重な東大受験情報の発信≫オンラインサロンの紹介はこちらから
東大生や東大卒業生への個別指導依頼はこちら

【(中学生・高1~2生など)東大を受験したい方なら誰でも】
≪高1・2でもOK!東大受験したい方ならだれでも対象≫オープン授業【東大数学のための単元導入授業】はこちらから
≪貴重な東大受験情報の発信≫オンラインサロンの紹介はこちらから
東大生や東大卒業生への個別指導依頼はこちら

【東大受験の情報を集めたい方】
≪貴重な東大受験情報の発信≫オンラインサロンの紹介はこちらから
オンラインサロンの無料記事を読みたい方はこちら

【敬天塾について知りたい方】
敬天塾の理念
敬天塾からの東大合格者インタビュー(ノーカット)はこちら
東大生や東大卒業生への指導依頼はこちら
スタッフの募集ページはこちら

2018年 東大理系第1問の解説

では、今日から理系数学に入りましょう。まずは、ちょっと話題になった第1問です。
問題を見た瞬間、多くの受験生が
「えっ???」
と思ったでしょう。しかも、冊子をめくってすぐのページ。驚きも倍増です。
何が驚きかって、増減表を書くのも、極限を調べるのも大して難しそうではないから。「本当に、こんなんで良いの?」と、変な疑いが生まれてしまうでしょう。
いつも、解かずに分析コーナーをやってますが、この問題に関してはほとんど書く事がありません。
増減表を作るって、微分して0になるxの値を調べるだけだし、極限に関しては、その通り極限計算をするだけ。
東大では珍しいですが、いかに時間をかけずに20点を取るかが勝負の問題です。25分かける方が負け。
では、手書きの解答をどうぞ。

「2018年 東大理系数学 第1問の解説(サービス問題!?、極限、増減表)」の続きを読む…

2018年 東大文系数学 第4問の解説(ベクトル、領域図示、面積)

日本一徹底して東大対策を行う塾 東大合格塾「敬天塾」◆

一人の先生が、全科目のバランスが取れた最適な戦略を指導
厳しい入塾審査を突破した精鋭たちと、東大合格法を徹底討論
塾生自らが、解法を発見し、習得する力を育成
受験くらい余裕でクリアして、その後の人生で差を付けろ!

1年後の東大合格を目指すなら、私の塾の門をたたけ!
弊塾のサービスは、全てオンラインで受講が可能です。
地方の方、仮面浪人の方、社会人受験の方など、広く皆さんにご受講いただけます。
ご希望のサービスを、以下からお選び下さい。

【2021年に東大を受験したい方】
≪東大文系受験者対象≫敬天塾本科生の募集はこちらから(このページです。)
≪東大文系受験者対象≫オープン授業【東大文系数学】はこちらから
≪高1・2でもOK!東大受験したい方ならだれでも対象≫オープン授業【東大数学のための単元導入授業】はこちらから
≪高1・2でもOK!東大受験したい方ならだれでも対象≫オープン授業【東大数学のための単元導入授業】はこちらから
≪貴重な東大受験情報の発信≫オンラインサロンの紹介はこちらから
東大生や東大卒業生への個別指導依頼はこちら

【(中学生・高1~2生など)東大を受験したい方なら誰でも】
≪高1・2でもOK!東大受験したい方ならだれでも対象≫オープン授業【東大数学のための単元導入授業】はこちらから
≪貴重な東大受験情報の発信≫オンラインサロンの紹介はこちらから
東大生や東大卒業生への個別指導依頼はこちら

【東大受験の情報を集めたい方】
≪貴重な東大受験情報の発信≫オンラインサロンの紹介はこちらから
オンラインサロンの無料記事を読みたい方はこちら

【敬天塾について知りたい方】
敬天塾の理念
敬天塾からの東大合格者インタビュー(ノーカット)はこちら
東大生や東大卒業生への指導依頼はこちら
スタッフの募集ページはこちら

2018年 東大文系数学 第4問の解説(ベクトル、領域図示、面積)

 

何度も書いてますが、2018年は領域図示ばっかりでした。本当に珍しい。

そして当然、それぞれ3問が同じ方法で図示出来ない問題です。

領域図示と言えば、図形と方程式や、軌跡と領域の範囲が思い浮かべますが、ベクトルにも登場します。

それが、この問題。しかも平行移動や軌跡も絡む応用問題です。理解出来れば簡単な問題ですが、手持ちの参考書や問題集で、このような応用的な類題を探すのは難しいかもしれません。

とにもかくにも、詳しい解説に行って見ましょう。

「2018年 東大文系数学 第4問の解説(ベクトル、領域図示、面積)」の続きを読む…

2018年 東大文系数学 第2問の解説(連続数と離散数、反復試行の最大値、コンビネーションなど)

日本一徹底して東大対策を行う塾 東大合格塾「敬天塾」◆

一人の先生が、全科目のバランスが取れた最適な戦略を指導
厳しい入塾審査を突破した精鋭たちと、東大合格法を徹底討論
塾生自らが、解法を発見し、習得する力を育成
受験くらい余裕でクリアして、その後の人生で差を付けろ!

1年後の東大合格を目指すなら、私の塾の門をたたけ!
弊塾のサービスは、全てオンラインで受講が可能です。
地方の方、仮面浪人の方、社会人受験の方など、広く皆さんにご受講いただけます。
ご希望のサービスを、以下からお選び下さい。

【2021年に東大を受験したい方】
≪東大文系受験者対象≫敬天塾本科生の募集はこちらから(このページです。)
≪東大文系受験者対象≫オープン授業【東大文系数学】はこちらから
≪高1・2でもOK!東大受験したい方ならだれでも対象≫オープン授業【東大数学のための単元導入授業】はこちらから
≪高1・2でもOK!東大受験したい方ならだれでも対象≫オープン授業【東大数学のための単元導入授業】はこちらから
≪貴重な東大受験情報の発信≫オンラインサロンの紹介はこちらから
東大生や東大卒業生への個別指導依頼はこちら

【(中学生・高1~2生など)東大を受験したい方なら誰でも】
≪高1・2でもOK!東大受験したい方ならだれでも対象≫オープン授業【東大数学のための単元導入授業】はこちらから
≪貴重な東大受験情報の発信≫オンラインサロンの紹介はこちらから
東大生や東大卒業生への個別指導依頼はこちら

【東大受験の情報を集めたい方】
≪貴重な東大受験情報の発信≫オンラインサロンの紹介はこちらから
オンラインサロンの無料記事を読みたい方はこちら

【敬天塾について知りたい方】
敬天塾の理念
敬天塾からの東大合格者インタビュー(ノーカット)はこちら
東大生や東大卒業生への指導依頼はこちら
スタッフの募集ページはこちら

2018年 東大文系数学 第2問の解説(連続数と離散数、反復試行の最大値、コンビネーションなど)

解かずに分析 わからない時こそ「ググる」解法

コンビネーションと階乗が含まれた数列の一般項が与えられています。
これに対して、(1)ではa7と1の大小比較をさせ、(2)では、an/an-1と1との大小比較をさせます。(そして、それを満たすnを求める。)
そして、(3)では整数となるanを全て求めよとのこと。
あれあれ、あまり見たことがない問題だぞ?と思うかもしれません。

「2018年 東大文系数学 第2問の解説(連続数と離散数、反復試行の最大値、コンビネーションなど)」の続きを読む…

2018年 東大数学 文系第3問 理系第4問の解説(3次関数の解の配置、増減表)

日本一徹底して東大対策を行う塾 東大合格塾「敬天塾」◆

一人の先生が、全科目のバランスが取れた最適な戦略を指導
厳しい入塾審査を突破した精鋭たちと、東大合格法を徹底討論
塾生自らが、解法を発見し、習得する力を育成
受験くらい余裕でクリアして、その後の人生で差を付けろ!

1年後の東大合格を目指すなら、私の塾の門をたたけ!
弊塾のサービスは、全てオンラインで受講が可能です。
地方の方、仮面浪人の方、社会人受験の方など、広く皆さんにご受講いただけます。
ご希望のサービスを、以下からお選び下さい。

【2021年に東大を受験したい方】
≪東大文系受験者対象≫敬天塾本科生の募集はこちらから(このページです。)
≪東大文系受験者対象≫オープン授業【東大文系数学】はこちらから
≪高1・2でもOK!東大受験したい方ならだれでも対象≫オープン授業【東大数学のための単元導入授業】はこちらから
≪高1・2でもOK!東大受験したい方ならだれでも対象≫オープン授業【東大数学のための単元導入授業】はこちらから
≪貴重な東大受験情報の発信≫オンラインサロンの紹介はこちらから
東大生や東大卒業生への個別指導依頼はこちら

【(中学生・高1~2生など)東大を受験したい方なら誰でも】
≪高1・2でもOK!東大受験したい方ならだれでも対象≫オープン授業【東大数学のための単元導入授業】はこちらから
≪貴重な東大受験情報の発信≫オンラインサロンの紹介はこちらから
東大生や東大卒業生への個別指導依頼はこちら

【東大受験の情報を集めたい方】
≪貴重な東大受験情報の発信≫オンラインサロンの紹介はこちらから
オンラインサロンの無料記事を読みたい方はこちら

【敬天塾について知りたい方】
敬天塾の理念
敬天塾からの東大合格者インタビュー(ノーカット)はこちら
東大生や東大卒業生への指導依頼はこちら
スタッフの募集ページはこちら

2018年 東大数学 文系第3問 理系第4問の解説

文系第3問

理系第4問

「2018年 東大数学 文系第3問 理系第4問の解説(3次関数の解の配置、増減表)」の続きを読む…

2018年 東大文系数学 第1問の解説(2次関数、距離の最小、領域図示)

日本一徹底して東大対策を行う塾 東大合格塾「敬天塾」◆

一人の先生が、全科目のバランスが取れた最適な戦略を指導
厳しい入塾審査を突破した精鋭たちと、東大合格法を徹底討論
塾生自らが、解法を発見し、習得する力を育成
受験くらい余裕でクリアして、その後の人生で差を付けろ!

1年後の東大合格を目指すなら、私の塾の門をたたけ!
弊塾のサービスは、全てオンラインで受講が可能です。
地方の方、仮面浪人の方、社会人受験の方など、広く皆さんにご受講いただけます。
ご希望のサービスを、以下からお選び下さい。

【2021年に東大を受験したい方】
≪東大文系受験者対象≫敬天塾本科生の募集はこちらから(このページです。)
≪東大文系受験者対象≫オープン授業【東大文系数学】はこちらから
≪高1・2でもOK!東大受験したい方ならだれでも対象≫オープン授業【東大数学のための単元導入授業】はこちらから
≪高1・2でもOK!東大受験したい方ならだれでも対象≫オープン授業【東大数学のための単元導入授業】はこちらから
≪貴重な東大受験情報の発信≫オンラインサロンの紹介はこちらから
東大生や東大卒業生への個別指導依頼はこちら

【(中学生・高1~2生など)東大を受験したい方なら誰でも】
≪高1・2でもOK!東大受験したい方ならだれでも対象≫オープン授業【東大数学のための単元導入授業】はこちらから
≪貴重な東大受験情報の発信≫オンラインサロンの紹介はこちらから
東大生や東大卒業生への個別指導依頼はこちら

【東大受験の情報を集めたい方】
≪貴重な東大受験情報の発信≫オンラインサロンの紹介はこちらから
オンラインサロンの無料記事を読みたい方はこちら

【敬天塾について知りたい方】
敬天塾の理念
敬天塾からの東大合格者インタビュー(ノーカット)はこちら
東大生や東大卒業生への指導依頼はこちら
スタッフの募集ページはこちら

2018年 東大文系数学 第1問の解説(2次関数、距離の最小、領域図示)

まずはいつも通り問題からどうぞ。

解かずに分析(1)

初めに、私のスタイルの特徴である、解かずに分析コーナーを。
(入試問題は、解く前に問題文を通読し、読み取れる情報を全て読み取ることが大事です。)

放物線Cと領域Dに登場するのは、同じ放物線だということを確認して、その放物線Cの上側が領域Dだと認識。
また直線lと直線mは、原点を通り放物線Cに接するとのことですが、放物線の正体が分かっているので、計算すればすぐにでも求められます。(方法は、微分を使うか、判別式かで2通りあります。)

「2018年 東大文系数学 第1問の解説(2次関数、距離の最小、領域図示)」の続きを読む…