2002年 東大数学 文系第2問 理系第2問 の解説(漸化式、帰納法、整数の証明、背理法

日本一徹底して東大対策を行う塾 東大合格塾「敬天塾」◆

一人の先生が、全科目のバランスが取れた最適な戦略を指導
厳しい入塾審査を突破した精鋭たちと、東大合格法を徹底討論
塾生自らが、解法を発見し、習得する力を育成
受験くらい余裕でクリアして、その後の人生で差を付けろ!

1年後の東大合格を目指すなら、私の塾の門をたたけ!
弊塾のサービスは、全てオンラインで受講が可能です。
地方の方、仮面浪人の方、社会人受験の方など、広く皆さんにご受講いただけます。
ご希望のサービスを、以下からお選び下さい。

【2021年に東大を受験したい方】
≪東大文系受験者対象≫敬天塾本科生の募集はこちらから(このページです。)
≪東大文系受験者対象≫オープン授業【東大文系数学】はこちらから
≪高1・2でもOK!東大受験したい方ならだれでも対象≫オープン授業【東大数学のための単元導入授業】はこちらから
≪貴重な東大受験情報の発信≫オンラインサロンの紹介はこちらから
東大生や東大卒業生への個別指導依頼はこちら

【(中学生・高1~2生など)東大を受験したい方なら誰でも】
≪高1・2でもOK!東大受験したい方ならだれでも対象≫オープン授業【東大数学のための単元導入授業】はこちらから
≪貴重な東大受験情報の発信≫オンラインサロンの紹介はこちらから
東大生や東大卒業生への個別指導依頼はこちら

【東大受験の情報を集めたい方】
≪貴重な東大受験情報の発信≫オンラインサロンの紹介はこちらから
オンラインサロンの無料記事を読みたい方はこちら

【敬天塾について知りたい方】
敬天塾の理念
敬天塾からの東大合格者インタビュー(ノーカット)はこちら
東大生や東大卒業生への指導依頼はこちら
スタッフの募集ページはこちら

 

2002年 東大数学 文系第2問 理系第2問

入試前日ですが、少しでもためになるようにと、今日もアップします。

 

 

今日も整数問題。

そして、これも東大で頻出パターンです。

 

本質的に同じ問題

これまでは、共役な無理数のn乗のパターンを書いてきましたが、今日は別の問題です。

しかし背景として同じ考え方を使っています。ぜひ、1997年の問題2003年の問題2017年の問題と比較してください。

 

これまでの3問は、帰納法で証明するために、3項間の漸化式を作っていましたが、この問題も(1)で漸化式を作らせています。

 

今回は、一見、30項間漸化式ではなく、anとbnの混合した漸化式ですが、実は3項間漸化式です。

このような、2種混合漸化式は、片方を消去してもう片方だけ残すと、3項間の漸化式が登場するのです。

(実際するかどうかは別)

 

また、(2)では、「anとbnが正の整数であることを証明せよ」という問題があります。これも、過去の3問と同じ。

 

ということで、①漸化式を作り、②帰納法で証明、③整数であることを証明などの点で、本質的に同じ問題なのです。

漸化式の作り方を、そっくりそのまま覚えよう

では、その漸化式の作り方ですが、これは超有名な方法です。そのまま覚えてほしいですね。

nに対して漸化式が定義されている時に、n+1の場合を2種類で表現して、恒等式で比較します。

「2002年 東大数学 文系第2問 理系第2問 の解説(漸化式、帰納法、整数の証明、背理法」の続きを読む…