2017年 東大理系数学 第3問(複素数平面・垂直二等分線・軌跡・反転)

◆東大合格塾「敬天塾」◆

1期生(2018受験生)合格率100%

立ち上げ初年度から、東大合格者を輩出。

1年後の東大合格を目指すなら、私の塾の門をたたけ!

一人の先生が、全科目のバランスが取れた最適な戦略を指導
日本一、東大の過去問を徹底的に分析
塾生自らが、解法を発見し、習得する力を育成
東大の過去問を、上から見下ろす経験を毎週体験
最新情報、先端情報をすぐに提供
受験くらい余裕でクリアして、その後の人生で差を付けろ!

2017年 東大理系数学 第3問(複素数平面・垂直二等分線・軌跡・反転)

出ました!複素数平面です

反転がテーマの問題

複素数、苦手な方が多いと思いますが、このレベルは解きたいところ。少なくとも、半分以上の部分点は取っておきたいところですね。

この問題は「反転」と言われる問題です。(z=1/wと置換することを「反転」といいます。)
原点からある半直線を引いて、その上にPとQの2点を取った時に、OP×OQ=一定となるようにPとQを動かす操作のことですね。
Pが直線を動くとQが円を描いたりして、面白い連動の仕方をします。

数学の先生なんかでは有名ですが、知らなくても入試問題は解けてしまいますから、必ず知らなきゃいけないものではありません。ということで、先生の中でもしっかりと勉強している人は少ないのでは!?
一応、青チャート何かでは触れられてるテーマなんですが。

この問題もしかり、入試問題を解くだけならば、知らなくても済むテーマなので、今回は反転の解説はしませんが、そういうテーマがあることだけは触れておきます。

(1)垂直二等分線の立式をすればOK

さて、問題へのアプローチの仕方ですが、まず(1)はzが垂直二等分線上を動くという条件です。
原点Oと、点αの垂直二等分線上ということで、|z|=|z-α|と作ればOK。
※垂直二等分線というのは、2点からの距離が等しい点の軌跡でもあります。中1の作図で習いますね。
このzに1/wを代入して、基本通りの変形をすれば解けます。教科書の例題にされかねない簡単さです。

線分の上を動く点の処理

次に(2)ですが、これは少し頭を使います。
まず、βとβ^2ですが、これを求めるところまでは行けますかね?
数Ⅱでは、複素数と方程式に出てきたω(オメガ)の話が通用しますし、数Ⅲならば複素数を使っても求められます。
求め方は、手書きの解答に載せておきましたが、βとβ^2が、縦に並んだ2点になりますね。

そして、zがβとβ^2の間を動くとのこと。
要するに(1)と似ている設定になるわけです。(直線を動くという意味で)
具体的には、(1)でα=-1にすると、そのままwの軌跡が求められます。

但し、zは直線上全てを動くわけではなく、βとβ^2の間、つまり線分の間しか動きません。
よって、wの軌跡も全体にならない(かもしれない)

という事で、どの部分が削られるかを調べれば、解答が完成です。
その、削り方が難しいんですが、今回はargを使ってます。不安ならば、実際にzに値を代入してみて、wの場所をチェックしても良いですね。

では、手書きの解答をどうぞ

最後、全体の軌跡から、wが通らない所を除外する所が難しいにしても、部分点は大量に取っておきたい問題です。

複素数も頻出ですから、来年の受験生は、要復習です。

◆東大合格塾「敬天塾」◆

1期生(2018受験生)合格率100%

立ち上げ初年度から、東大合格者を輩出。

1年後の東大合格を目指すなら、私の塾の門をたたけ!

一人の先生が、全科目のバランスが取れた最適な戦略を指導
日本一、東大の過去問を徹底的に分析
塾生自らが、解法を発見し、習得する力を育成
東大の過去問を、上から見下ろす経験を毎週体験
最新情報、先端情報をすぐに提供
受験くらい余裕でクリアして、その後の人生で差を付けろ!

コメントを残す