2019年 東大数学 文系第3問 (確率、多角形グルグル、道順、中学受験で解ける)

◆東大合格塾「敬天塾」◆

1期生合格率100%、塾生の約45%が東大に進学する塾 

立ち上げ初年度から、東大合格者を輩出。

1年後の東大合格を目指すなら、私の塾の門をたたけ!

一人の先生が、全科目のバランスが取れた最適な戦略を指導
日本一、東大の過去問を徹底的に分析
塾生自らが、解法を発見し、習得する力を育成
東大の過去問を、上から見下ろす経験を毎週体験
最新情報、先端情報をすぐに提供
受験くらい余裕でクリアして、その後の人生で差を付けろ!

 

塾の紹介ページはこちら

       

2019年 東大数学 文系第3問

では、今日は文系第3問です。復活した確率の問題。

確率の問題は、設定の読み込みに10分かけても良い

東大の確率だなぁっていう問題。

知らない設定が登場し、読み込んでカラクリを解き明かすのに時間がかかる。

複雑な場合分けが登場し、立式までに時間がかかる。でも計算はそれほど面倒ではない、といったところ。

 

ということで、うちの塾では「確率の問題が出たら、10かけてよいから設定の読み込みをせよ」と教えています。

 

さて、今回のカラクリやいかに!?

(1)は簡単。

(1)は簡単ですね。10回コインを振って、またAに戻ってくるという問題です。

1周するかどうか、1周するとしたら、右回りなのか、左回りなのか、という場合分けになりますが、これは簡単に理解できるでしょう。

これは受験生ならば解けなければならない問題ですね。解説は割愛。手書きの解答をご覧くださいませ。

(2)は場合分けが複雑

次は(2)の問題なのですが、これはかなり複雑です。

T「Fに少なくとも1回立ち寄る」という条件が加わりますが、これを処理するためには、複雑な場合分けが必要です。

 

版時計周りだとしたら、5回目にたどり着くか、7回目にたどり着くか。でも7回目にたどり着くとき、5回目にはFに移動してちゃいけないから・・・。

などと考え始めると、混乱してしまいます。

 

実際は、文系受験者にとって、これはかなり難しかったのではないかと思いますね。恐らく(1)だけ解いて、(2)は0点のような答案が多いのではないだろうかと思います。

ビジュアル化① マス目を作る

予備校の模範解答では、場合分けを駆使して解いているものがありましたが、僕が読んでもあまり意味がわからない解答だったので、分かりやすさを重視して、2つビジュアル化した解答を用意しました。

(といっても、受験生が時間内にこれを思いつくかどうかは、微妙なのですが)

 

一つ目は、下のようなマス目を作って、道順の移動で考える方法です。

 

スタートのAの位置から、①~⑤のどこかの点(F)を通り、⑥~⑧の点(A)に辿りつくという場合分けです。

このようにマス目を作ると、一気に見やすくなりますね。今回は正八角体をグルグルする問題でしたが、多角形をグルグルする問題は良く出ますから、他の場合にも使ってみてください。

※ただし、①~⑤は「初めてFに到達する」という条件の下で場合わけします。

 

これで場合分けができますので、あとは計算して終わりとなります。

ビジュアル化② 中学受験方式

次は、中学受験で習う方式で計算するものです。

普通、このような道順の問題の場合、コンビネーション(nCr)で計算するのが一般的ですが、パスカルの三角形を利用して、足し算を繰り返す方法もあります。

 

まずは、通れない道をすべて消して、通れる道だけを残します。

そして、ある点に対し、一つ前タイミングにいる点の数字を2つ足しながら、ゴールにたどり着くのです。

すると、ゴールへの生き方が206通りになります。

 

あとは、2^10で割って、(1)の答えから引けばOK。

 

ということで手書きの解答をご覧くださいませ。

場合分けが難しいのですが、工夫をすると簡単になるというのも東大っぽい。

多角形グルグル問題は、このマス目の作り方を覚えておくと使えますよ。

 

◆東大合格塾「敬天塾」◆

1期生合格率100%、塾生の約45%が東大に進学する塾 

立ち上げ初年度から、東大合格者を輩出。

 1年後の東大合格を目指すなら、私の塾の門をたたけ!

一人の先生が、全科目のバランスが取れた最適な戦略を指導
日本一、東大の過去問を徹底的に分析
塾生自らが、解法を発見し、習得する力を育成
東大の過去問を、上から見下ろす経験を毎週体験
最新情報、先端情報をすぐに提供
受験くらい余裕でクリアして、その後の人生で差を付けろ!

 

塾の紹介ページはこちら

       

コメントを残す




日本語が含まれない投稿は無視されますのでご注意ください。(スパム対策)