2017年 東大数学 文系第4問 理系第4問 の解説(過去問とそっくり)

◆東大合格塾「敬天塾」◆

1期生合格率100%、塾生の約45%が東大に進学する塾) 

立ち上げ初年度から、東大合格者を輩出。

 1年後の東大合格を目指すなら、私の塾の門をたたけ!

一人の先生が、全科目のバランスが取れた最適な戦略を指導
日本一、東大の過去問を徹底的に分析
塾生自らが、解法を発見し、習得する力を育成
東大の過去問を、上から見下ろす経験を毎週体験
最新情報、先端情報をすぐに提供
受験くらい余裕でクリアして、その後の人生で差を付けろ!

 

塾の紹介ページはこちら

       

2017年 東大数学 文系第4問 理系第4問

整数の解説を書き続けてますが、今日の問題はこれ。

 

 

共役な無理数は気付かなくちゃダメ

 

実は、この問題の解説を書くのは2度目なのですが、なぜまた書くかというと、前々回の1997年の問題と、前回の2003年の問題の流れで見てほしかったからです。

 

「いやいや、今回は共役な無理数がないじゃないか」

と思うかもしれませんが、ありますよ、ちゃんと。

 

pに対し、-1/pが登場していてわかりづらくなっていますが、計算してみるとちゃんと共役になるのです。

ちなみに、p=2+√5に対して、-1/pは2-√5になります。

こざかしいマネをしてますが、東大の整数の歴史をたどれば、連想するのは当然なのです。

過去の問題と比較しよう

では、1997年の問題と、2003年の問題と比較してみてみましょう。

この2回で書いたのは、共役な無理数のn乗が登場したら、帰納法で整数だと証明させていました。

その時に必要なのは、漸化式。もっと言えば、3項間の漸化式が得られて、強化帰納法を使うのでした。

 

それを知っている前提でこの問題を見てみましょう。

 

おやおや、(1)でa1とa2を求めているぞ。

(2)では、a1anをan+1とan-1で表せとな。ということは、3項間の漸化式を作れということに他ならない。

そして、(3)では自然数になることの証明。

 

なんだ、同じじゃないか!!

 

となるわけです。

(2)の漸化式の作り方も、a1anから作ろうとすると難しいけど、いつも通りの作り方をすると、ごくごく自然。

ということで、(3)までは瞬殺の問題なのでした。

 

(4)の発想も自然にユークリッド

では、(4)に行きますが、出題された当時は、ユークリッドの発想が難しいと噂になってましたが、そうですか?

僕からしてみると、自然な発想なのですが。

 

だって、最大公約数に絡む技術って、2つくらいしかないですもの。

 

一つは最大公約数と最小公倍数をgとlっておいて、

①a=a’g

②b=b’g(a’とb’は互いに素)

③l=a’b’g

④ab=gl

の4式を立てる方針。

 

二つ目がユークリッドの互除法です。

 

確かにユークリッドの互除法を漸化式に使う発想は難しい(というか慣れていない)かもしれませんが、着想はできるはず。

 

ということで、手書きの解答です。

 

 

ということで、今回は力を抜いてこれくらいで終わりましょう。

 

いや~、過去問を解くのって大事ですね。

 

◆東大合格塾「敬天塾」◆

1期生合格率100%、塾生の約45%が東大に進学する塾) 

立ち上げ初年度から、東大合格者を輩出。

 1年後の東大合格を目指すなら、私の塾の門をたたけ!

一人の先生が、全科目のバランスが取れた最適な戦略を指導
日本一、東大の過去問を徹底的に分析
塾生自らが、解法を発見し、習得する力を育成
東大の過去問を、上から見下ろす経験を毎週体験
最新情報、先端情報をすぐに提供
受験くらい余裕でクリアして、その後の人生で差を付けろ!

 

塾の紹介ページはこちら

       

2017年 東大文系数学 第3問 理系数学 第2問の解説(場合の数・確率・反復試行)

◆東大合格塾「敬天塾」◆

1期生合格率100%、塾生の約45%が東大に進学する塾

立ち上げ初年度から、東大合格者を輩出。

1年後の東大合格を目指すなら、私の塾の門をたたけ!

一人の先生が、全科目のバランスが取れた最適な戦略を指導
日本一、東大の過去問を徹底的に分析
塾生自らが、解法を発見し、習得する力を育成
東大の過去問を、上から見下ろす経験を毎週体験
最新情報、先端情報をすぐに提供
受験くらい余裕でクリアして、その後の人生で差を付けろ!

 

センター試験を成功させて、入試を突破しよう!産経新聞社のウェブサイトで私のコラムが配信されています。

バックナンバーはこちら。

第1弾:大学入試センター試験に間に合う!1カ月で膨大な知識が覚えられる暗記法(上)

第2弾:大学入試センター試験に間に合う!1カ月で膨大な知識が覚えられる暗記法(下)

第3弾:1カ月でセンター試験の英語の得点が50点上がる方法

第4弾:ピリピリする受験生を成功に導くために親がすべき7つのこと

第5弾:合格しない人から合格する人になれるイメージ戦略

2017年 東大文系数学 第3問 理系数学 第2問の解説

昨日の告知に続き、まずは2017年 東大文系数学の第3問と、理系第2問です。

まずは、問題を。

文系第3問は・・・

 

 

そんでもって、理系第2問は

 

見比べると分かりますが、文系の(2)と、理系の(1)が同じ問題ですね。

文系では、もっと簡単な・・・というか死ぬほど簡単な(1)が追加されていて、

理系ではちょっと手間がかかる(2)が追加されているという感じ。

まずは、文系の方から片づけてしまいましょう。問題の設定を読んで下さい。

「2017年 東大文系数学 第3問 理系数学 第2問の解説(場合の数・確率・反復試行)」の続きを読む…

2017年 東大理系数学 第6問(立体・体積・積分・三角関数)

◆東大合格塾「敬天塾」◆

1期生合格率100%、塾生の約45%が東大に進学する塾

立ち上げ初年度から、東大合格者を輩出。

1年後の東大合格を目指すなら、私の塾の門をたたけ!

一人の先生が、全科目のバランスが取れた最適な戦略を指導
日本一、東大の過去問を徹底的に分析
塾生自らが、解法を発見し、習得する力を育成
東大の過去問を、上から見下ろす経験を毎週体験
最新情報、先端情報をすぐに提供
受験くらい余裕でクリアして、その後の人生で差を付けろ!

2017年 東大理系数学 第6問

さあ、東大お得意の立体図形の求積!

これは難しいですよね。問題文の意味を読み取るのは、読み取れたとしても立体のイメージが掴めない。

一体、どんな形をしているやら・・・。

とは言っても、(1)はそれほど難しい問題ではありませんね。Pの座標を(x、y、z)でおいて、立式すれば解けます。簡単な軌跡の問題です。

「2017年 東大理系数学 第6問(立体・体積・積分・三角関数)」の続きを読む…

2017年 東大理系数学 第5問の解説(二次関数・二次曲線・放物線・接線・判別式)

◆東大合格塾「敬天塾」◆

1期生合格率100%、塾生の約45%が東大に進学する塾

立ち上げ初年度から、東大合格者を輩出。

1年後の東大合格を目指すなら、私の塾の門をたたけ!

一人の先生が、全科目のバランスが取れた最適な戦略を指導
日本一、東大の過去問を徹底的に分析
塾生自らが、解法を発見し、習得する力を育成
東大の過去問を、上から見下ろす経験を毎週体験
最新情報、先端情報をすぐに提供
受験くらい余裕でクリアして、その後の人生で差を付けろ!

2017年 東大理系数学 第5問の解説(二次関数・二次曲線・放物線・接線・判別式)

まずは、問題から。

数学を体系的に教えるべき

東大の数学は確率や整数が難しく、関数の問題が比較的簡単になりがち。
そういう意味で、この問題は受験生が得意そうな問題。

特に接線関連の問題はたくさん問題集にも載ってますし、それほど複雑にならないことが多いので、見た瞬間に手を付けた受験生が多いでしょうね。
実際に解いてみても、あまり深いことを考えず、なんだかゴチャゴチャ計算していたら解けちゃった、みたいな問題です。

僕は今の数学教育は、計算訓練にすぎないと思っているのですが、接線関連に関しても同様で、割とその場しのぎで解いている人が多い印象です。理論的、体系的に教え、考えるべきだと思っているのですが。
とそんな愚痴はどうでもよいとして、解答の方針に行きましょう。

(1)接線の解法

まず(1)は共通接線の条件を立式するわけですが、今回はy=ax+bの式と、2つの放物線が接しているとのこと。
接する条件には色々ありますが、今回は素直に判別式で良さそうですね。

もう少し細かく言うと、例えば3次関数とか、指数や三角関数が含まれている関数であれば、微分を用いるのでしょうけど、そういうわけでもないし、
接点が分かっていれば、接点から接線を引く事も出来るんですが、ちょっと使える形ではない。

まあ、接するのが放物線(二次曲線)ですからね。あれこれ考えず、判別式を創っちゃえば良い、ということでしょう。
という事で、(判別式)=0の等式を2本立てると、(1)は解けてしまいます。

不明量がaとbとkで3文字。
それに対して、(判別式)=0の等式が2本です。
そして、問題文の要求が、bとkをaを用いて表せという事ですから、1文字分余ってOK
という事で、方針の目途も簡単に立ちます。

あまり深く考えず判別式というのが、良いでしょう。

丁寧に問題文を読もう

次に(2)。
まず何も考えず、a=2を代入するところから始めます。
すると(1)の結果を使ってbとkの値が出ますね。
これで部分点は確保です。
ここまでは簡単だから良いとして、問題文の意味を理解しているでしょうか?
丁寧に読み解きましょう。

問題文には
「傾きが2の共通接線が存在するようにkの値を定める。」
とあります。
傾きが2とあるので、a=2を代入したわけで、このaに対してkの値が定まります。

その次に
「このとき」
とありますが、これは
「a=2に対応するkの値のとき」
という意味です。

続いて
「共通接線が3本存在することを示し、それらの傾きとy切片を求めよ。」
とあります。

つまり、今求めたkの値の時に共通接線が3本あって、そのうちの1本がa=2かつ求めたbであるということです。
ということは、kはこれ以上いじらなくて良くて、aとbはあと2組求める必要があるのです。

という事で、今度は求めたkの値を元の式に代入して、aとbの値を探していく作業に移ります。

この辺りがややこしてくて、少し混乱するかもしれませんが、東大入試にしては簡単でしょう。
もし「共通接線を全て求めよ」だと、難易度が上がるのですが、今回は3本と言われてますから、悩みません。

逆関数の扱い

気付かないと解けないわけではないですが、補足説明として逆関数に触れましょう。

冒頭に与えられた2つの放物線が、逆関数になってますよね。
だから、a=‐1は、kやbに関係なく、常に解になっています。

あと、最後に求めたaの値も、2と1/2ですから、これもy=xに関して対称になってますね。
この辺りに注目できると、計算ミスも防げそうです。

では、最後に手書きの解答をご覧くださいませ。

◆東大合格塾「敬天塾」◆

1期生合格率100%、塾生の約45%が東大に進学する塾

立ち上げ初年度から、東大合格者を輩出。

1年後の東大合格を目指すなら、私の塾の門をたたけ!

一人の先生が、全科目のバランスが取れた最適な戦略を指導
日本一、東大の過去問を徹底的に分析
塾生自らが、解法を発見し、習得する力を育成
東大の過去問を、上から見下ろす経験を毎週体験
最新情報、先端情報をすぐに提供
受験くらい余裕でクリアして、その後の人生で差を付けろ!

2017年 東大理系数学 第3問(複素数平面・垂直二等分線・軌跡・反転)

◆東大合格塾「敬天塾」◆

1期生合格率100%、塾生の約45%が東大に進学する塾

立ち上げ初年度から、東大合格者を輩出。

1年後の東大合格を目指すなら、私の塾の門をたたけ!

一人の先生が、全科目のバランスが取れた最適な戦略を指導
日本一、東大の過去問を徹底的に分析
塾生自らが、解法を発見し、習得する力を育成
東大の過去問を、上から見下ろす経験を毎週体験
最新情報、先端情報をすぐに提供
受験くらい余裕でクリアして、その後の人生で差を付けろ!

2017年 東大理系数学 第3問(複素数平面・垂直二等分線・軌跡・反転)

出ました!複素数平面です

反転がテーマの問題

複素数、苦手な方が多いと思いますが、このレベルは解きたいところ。少なくとも、半分以上の部分点は取っておきたいところですね。

この問題は「反転」と言われる問題です。(z=1/wと置換することを「反転」といいます。)
原点からある半直線を引いて、その上にPとQの2点を取った時に、OP×OQ=一定となるようにPとQを動かす操作のことですね。
Pが直線を動くとQが円を描いたりして、面白い連動の仕方をします。

数学の先生なんかでは有名ですが、知らなくても入試問題は解けてしまいますから、必ず知らなきゃいけないものではありません。ということで、先生の中でもしっかりと勉強している人は少ないのでは!?
一応、青チャート何かでは触れられてるテーマなんですが。

この問題もしかり、入試問題を解くだけならば、知らなくても済むテーマなので、今回は反転の解説はしませんが、そういうテーマがあることだけは触れておきます。

(1)垂直二等分線の立式をすればOK

さて、問題へのアプローチの仕方ですが、まず(1)はzが垂直二等分線上を動くという条件です。
原点Oと、点αの垂直二等分線上ということで、|z|=|z-α|と作ればOK。
※垂直二等分線というのは、2点からの距離が等しい点の軌跡でもあります。中1の作図で習いますね。
このzに1/wを代入して、基本通りの変形をすれば解けます。教科書の例題にされかねない簡単さです。

線分の上を動く点の処理

次に(2)ですが、これは少し頭を使います。
まず、βとβ^2ですが、これを求めるところまでは行けますかね?
数Ⅱでは、複素数と方程式に出てきたω(オメガ)の話が通用しますし、数Ⅲならば複素数を使っても求められます。
求め方は、手書きの解答に載せておきましたが、βとβ^2が、縦に並んだ2点になりますね。

そして、zがβとβ^2の間を動くとのこと。
要するに(1)と似ている設定になるわけです。(直線を動くという意味で)
具体的には、(1)でα=-1にすると、そのままwの軌跡が求められます。

但し、zは直線上全てを動くわけではなく、βとβ^2の間、つまり線分の間しか動きません。
よって、wの軌跡も全体にならない(かもしれない)

という事で、どの部分が削られるかを調べれば、解答が完成です。
その、削り方が難しいんですが、今回はargを使ってます。不安ならば、実際にzに値を代入してみて、wの場所をチェックしても良いですね。

では、手書きの解答をどうぞ

最後、全体の軌跡から、wが通らない所を除外する所が難しいにしても、部分点は大量に取っておきたい問題です。

複素数も頻出ですから、来年の受験生は、要復習です。

◆東大合格塾「敬天塾」◆

1期生合格率100%、塾生の約45%が東大に進学する塾

立ち上げ初年度から、東大合格者を輩出。

1年後の東大合格を目指すなら、私の塾の門をたたけ!

一人の先生が、全科目のバランスが取れた最適な戦略を指導
日本一、東大の過去問を徹底的に分析
塾生自らが、解法を発見し、習得する力を育成
東大の過去問を、上から見下ろす経験を毎週体験
最新情報、先端情報をすぐに提供
受験くらい余裕でクリアして、その後の人生で差を付けろ!

2017年 東大文系数学 第4問 理系数学 第4問 (ユークリッドの互除法・漸化式・対称式・最大公約数)

◆東大合格塾「敬天塾」◆

1期生合格率100%、塾生の約45%が東大に進学する塾
立ち上げ初年度から、東大合格者を輩出。
1年後の東大合格を目指すなら、私の塾の門をたたけ!

一人の先生が、全科目のバランスが取れた最適な戦略を指導
日本一、東大の過去問を徹底的に分析
塾生自らが、解法を発見し、習得する力を育成
東大の過去問を、上から見下ろす経験を毎週体験
最新情報、先端情報をすぐに提供
受験くらい余裕でクリアして、その後の人生で差を付けろ!

2017年 東大文系数学 第4問 理系数学 第4問 (ユークリッドの互除法・漸化式・対称式・最大公約数)

2017年は、整数問題が文理共通でした。
簡単だ、簡単だと言われ続けている今年の数学ですが、これは難しかったと評判です。

共役な無理数に気づけ!

僕はこのHPや、アメブロでいつも「解く前に問題文を最後まで読み、読み取れる情報を読み取れ!」と言い続けていますが、この問題は非常に面白い!
解かずに通読しただけで、かなりたくさんの情報を読み取れます。

まずは、対称式。気づきました?
p=2+√5に対して、pのn乗と、-1/pのn乗があります。
大抵こういう時は、共役な無理数になるものなのです。そして計算してみるとやっぱりそうなる。
こういう「パターンの知識」をしっかり積み重ねるのが、数学の勉強です。

共役な無理数ときたら、対称式

そして、共役な無理数が登場したら、対称式がセットで出てきます。

和と積を計算してみてください。
両方とも整数値になるはずです。ということは、対称式の計算がしやすいのです。

この問題は、共役な無理数のn乗の和になってますが、これも対称式を大いに使う問題なのです。

それが、漸化式の利用なのです。

そして、漸化式を作る

共役な無理数のn乗の和が出たら、必ず登場する性質があります。
それが「nにかかわらず整数になる」というもの。
つまり、この問題の(3)の問題のことです。

東大でも過去に何度か出ています。
分かりやすいところで言うと、2003年、1997年、1993年の問題でしょう。
(今後解説をアップする予定です。)

証明の仕方は、漸化式を作って帰納法で証明です。

漸化式の作り方

で、その漸化式の作り方ですが、(2)そのものでした。変な問題に見えて、非常に基礎の積み重ねの延長にある問題です。
n乗の和を、n-1乗の和と、n-2乗の和で表すものですが、いつもの計算の流れ。
この機会に覚えてしまいましょう。

一応、手書きの解答には、2通りの解法を載せておきました。
1つは、模範解答でも載っているような、最短での計算方法で、
もう一つは、面倒で遠回りだけど、絶対に求められる方法です。(pのn乗と、-1/pのn乗を不明量とみなし、連立方程式で無理矢理解いてます。)

(4)は難しい

(4)は最大公約数を求めよという問題。これが、難しかったと評判ですね。
ただし、僕としては「なんで難しいの?」という感じ。

数学ⅠAⅡBⅢで習う項目を頭の中で一度検索しなおしてください。
最大公約数に絡む定理や性質、問題パターンは多くありません。真っ先に思い浮かべるのが、ユークリッドの互除法ですから、むしろ自然な発想です。
(他にも、GCMとLCMを使って、等式を作るタイプもありますが)

(2)で漸化式を求めておけば、an+1と、anの最大公約数が、anとan-1の最大公約数になることが分かります。
そして、漸化式を一つずらせば、anとan-1の最大公約数が、an-1とan-2の最大公約数になり、
またずらせば・・・と、繰り返すと結局a2とa1の最大公約数になります。

難しいなと感じた方は、頭の中の回路で「最大公約数=ユークリッドの互除法」と強く結び付けておいてください。

ということで、手書きの解答です。どうぞ。

◆東大合格塾「敬天塾」◆

1期生合格率100%、塾生の約45%が東大に進学する塾
立ち上げ初年度から、東大合格者を輩出。
1年後の東大合格を目指すなら、私の塾の門をたたけ!

一人の先生が、全科目のバランスが取れた最適な戦略を指導
日本一、東大の過去問を徹底的に分析
塾生自らが、解法を発見し、習得する力を育成
東大の過去問を、上から見下ろす経験を毎週体験
最新情報、先端情報をすぐに提供
受験くらい余裕でクリアして、その後の人生で差を付けろ!

2017年 東大文系数学 第2問(ベクトル・領域図示・面積・図形・媒介変数)

今日は、2017年の東大文系数学の第2問です!

簡単という噂ですが、初手で間違えると痛い目見ます。

詳しい解説は、アメブロの記事へ飛んでください!こちらのリンクです。

手書きの解答を見たい方は、「続きを読む」をくりっくぷりーず。

「2017年 東大文系数学 第2問(ベクトル・領域図示・面積・図形・媒介変数)」の続きを読む…

2017年 東大理系数学 第1問(三角関数・チェビシェフの多項式・二次関数・場合分け・最大最小)

毎日、東大入試数学を更新するコーナー。

今日は、2017年の東大入試、理系第1問です!

詳しい解説は、アメブロのこちらをクリック

手書きの解答を見たい方は、「続きを読む」へGO!

「2017年 東大理系数学 第1問(三角関数・チェビシェフの多項式・二次関数・場合分け・最大最小)」の続きを読む…

2017年 東大文系数学 第1問の解説(二次関数、面積、積分、最大値)

さあさあ、これから毎日、今年の東大数学の解説をアップしていきます。

まずは、文系第1問です。

詳しい解説は、こちらのリンクから見れます。

手書きの解答だけ見たい方は、「続きを読む」をクリックしてくださーい。

「2017年 東大文系数学 第1問の解説(二次関数、面積、積分、最大値)」の続きを読む…