2019夏 河合東大オープン 文系数学第4問の解説(整数、互いに素、分数式が整数になる条件)

2019年夏 河合東大オープン 文系数学第4問の解説

さて、第4問。
典型的な整数問題。
(2)も、かつての難しさほどではなく、東大受験する人ならば知っておきたい解法というレベル。
取りたいです。

「2019夏 河合東大オープン 文系数学第4問の解説(整数、互いに素、分数式が整数になる条件)」の続きを読む…

2019夏 河合東大オープン 文系数学第3問の解説(図形の問題の3つの解法)

2019年夏 河合東大オープン 文系数学第3問の解説

だいぶ更新が遅れてしまっていますが、文系第3問です。
この問題は、ぜひ東大文系受験者によく研究してほしい問題ですね。
理由としては、
①同じような問題が、ここ最近出題されている。
②別解やアプローチが複数あり、比較検討することにより、解法がパターン化できる。
といったところ。
ではまず問題です。
図形が与えられて、面積やら長さやら角度やらを求めさせる問題。
単純そうで、苦手な子が多いのです。
では、どのように考えたらよいでしょう。

図形の問題のアプローチは?

このブログでも何度か書いていますが、このような図形の問題のアプローチの方法は、意外と体系化されていません。
私は主に、以下の3つくらいが使いこなせると良いだろうと思っています。
図形問題の解法パターン
①図形の性質を利用して解く
②座標を設定して解く
③ベクトルで解く
ということで、今回は(作るの大変だったのですが)3パターンの解法を全て載せます。(それでアップが遅れたんですが)

「2019夏 河合東大オープン 文系数学第3問の解説(図形の問題の3つの解法)」の続きを読む…

2019夏 河合東大オープン 文系数学第2問の解説

日本一徹底して東大対策を行う塾 東大合格塾「敬天塾」◆

一人の先生が、全科目のバランスが取れた最適な戦略を指導
厳しい入塾審査を突破した精鋭たちと、東大合格法を徹底討論
塾生自らが、解法を発見し、習得する力を育成
受験くらい余裕でクリアして、その後の人生で差を付けろ!

1年後の東大合格を目指すなら、私の塾の門をたたけ!
弊塾のサービスは、全てオンラインで受講が可能です。
地方の方、仮面浪人の方、社会人受験の方など、広く皆さんにご受講いただけます。
ご希望のサービスを、以下からお選び下さい。

【2021年に東大を受験したい方】
≪東大文系受験者対象≫敬天塾本科生の募集はこちらから(このページです。)
≪東大文系受験者対象≫オープン授業【東大文系数学】はこちらから
≪高1・2でもOK!東大受験したい方ならだれでも対象≫オープン授業【東大数学のための単元導入授業】はこちらから
≪貴重な東大受験情報の発信≫オンラインサロンの紹介はこちらから
東大生や東大卒業生への個別指導依頼はこちら

【(中学生・高1~2生など)東大を受験したい方なら誰でも】
≪高1・2でもOK!東大受験したい方ならだれでも対象≫オープン授業【東大数学のための単元導入授業】はこちらから
≪貴重な東大受験情報の発信≫オンラインサロンの紹介はこちらから
東大生や東大卒業生への個別指導依頼はこちら

【東大受験の情報を集めたい方】
≪貴重な東大受験情報の発信≫オンラインサロンの紹介はこちらから
オンラインサロンの無料記事を読みたい方はこちら

【敬天塾について知りたい方】
敬天塾の理念
敬天塾からの東大合格者インタビュー(ノーカット)はこちら
東大生や東大卒業生への指導依頼はこちら
スタッフの募集ページはこちら

 

2019年夏 河合東大オープン 文系数学第2問の解説

ちょっと期間あいてしまいましたが、河合オープンの解説です。

第2問は文理共通問題でしたが、文系には少し難しかったでしょうか。でも、東大の本試の方がもう少し難しい印象なので、これくらいは解きたいところ。理系なら20点を平気で取りたいレベルです。

 

大雑把な感想としては、確率漸化式が解きなれてれば完答できるけど、苦手だと何もできないで終わるという感じ。あとは計算量が多いのが面倒ですかね。 という前振りで、細かく見ていきましょう。

 

(1)場合分けて計算するだけ。でもそれだけでは・・・

(1)は確率でよくあるタイプ。nが小さい場合の値を計算させる問題でございます。

得点を取るだけなら、樹形図を描いて計算すればよいのですが、(2)のようにnの場合につなげるにはそれだけではダメ。

 

なんなら、先に(2)を解いて、そのために必要な要素を(1)から探るくらいでよいと思います。

 

確率漸化式は、遷移図描いて、掛けて足すだけ

ということで、今回はいつもと変えて、(2)から解いてみましょう。

確率漸化式の問題は、遷移図を書いて状況を調べれば、ほとんど解けたも同然。計算ミスさえなければ、勝利が確定します。

「2019夏 河合東大オープン 文系数学第2問の解説」の続きを読む…

2019夏 河合東大オープン 文系数学第1問の解説

2019年夏 河合東大オープン 文系数学第1問の解説

毎年恒例、東大模試の解説を始めていこうと思います。
昨日実施された、河合オープンの文系第1問です。
まず問題から。
2019夏 河合東大オープン 文系数学第1問 問題_1 合格 受験 東大模試 駿台実戦

(1)は教科書例題レベル

瞬殺です。
(1)は教科書例題レベルと言ってよいでしょう。

関数の問題の超基本事項(中2で習います)である
関数の交点 ⇔ 連立した方程式の解
を使って、とにかくC1とC2を連立。すると、定数kが右辺に分離出来て、左辺が3次関数となります。

あとは増減表書いて、グラフを描いて、3回交わるkの範囲を求めると。
まさに教科書例題です。
2019夏 河合東大オープン 文系数学第1問 問題_1 合格 受験 東大模試 駿台実戦
↑この教科書の例題と同じ問題です。

さすがに、これは解けなきゃ。

(2)はも瞬殺

(2)は教科書例題レベルとは言いません。しかし、教科書レベルではあります。

α+β+γという数式はどこで見たことがあるでしょうか?端的に行って「解と係数の関係」の時だけでしょう。3文字の和という意味であれば、因数分解の公式など、他のものもありますが、今回は交点のx座標の和です。
先ほども言いましたが、交点のx座標というのは、方程式の解です。
つまり、3つの解の和ですから、3文字の解と係数の関係で一択になります。

というのが分かってしまえば、あとは鼻息交じりで、連立して3次方程式を作って解と係数の関係を立てておけば終わり♪
これも瞬殺で、ラスボスにチャレンジしましょう。
数学が得意なら、ここまでで3分以内でたどり着きたい問題。

「2019夏 河合東大オープン 文系数学第1問の解説」の続きを読む…